A Note on Differentiability of Lipschitz Maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fréchet differentiability of Lipschitz maps between Banach spaces

A well-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point of Fréchet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is...

متن کامل

Metric differentiability of Lipschitz maps defined on Wiener spaces

This note is devoted to the differentiability properties of H-Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces, so we start by recalling some basic definitions related to the Wiener space structure. Let (E, ‖ · ‖) be a separable Banach space endowed with a Gaussian measure γ. Recall that a Gaussian measure γ on E equipped with its Borel σ−algebra B is a probabil...

متن کامل

On Gâteaux Differentiability of Pointwise Lipschitz Mappings

Abstract. We prove that for every function f : X → Y , where X is a separable Banach space and Y is a Banach space with RNP, there exists a set A ∈ Ã such that f is Gâteaux differentiable at all x ∈ S(f) \ A, where S(f) is the set of points where f is pointwise-Lipschitz. This improves a result of Bongiorno. As a corollary, we obtain that every K-monotone function on a separable Banach space is...

متن کامل

On the Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces

We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximati...

متن کامل

Lipschitz Maps on Trees

We introduce and study a metric notion for trees and relate it to a conjecture of Shelah [10] about the existence of a finite basis for a class of linear orderings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Polish Academy of Sciences Mathematics

سال: 2010

ISSN: 0239-7269,1732-8985

DOI: 10.4064/ba58-3-8